$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) (3) (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) (3) (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)
$N_2 = N_1 = C_7$ 119.1 (2) $C_{25} = C_{20} = C_{21}$ 118.1 $N_2 = N_1 = C_1$ 118.5 (2) $C_{25} = C_{20} = S_2$ 128.5	(3)
N2_N1_C1 118 5 (2) C25_C20_S2 128.5	(3)
	(2)
C7-N1-C1 122.2 (2) $C21-C20-S2$ 113.5	(2)
$N1 - N2 - M_0$ 176.1 (2) C22 - C21 - C20 121.6	(3)
C2-C1-C6 120.7 (3) C23-C22-C21 120.4	(3)
$C_2 - C_1 - N_1$ 119.5 (3) $C_2 - C_2 - $	(3)
C6-C1-N1 119.8 (3) C23-C24-C25 122.0	i(3)
C1-C2-C3 118.9 (4) C20-C25-C24 118.7	(3)
C4-C3-C2 120.0 (4) C20-C25-C26 125.8	(2)
C_{5} C_{4} C_{3} 120.8(4) C_{24} C_{25} C_{26} 115.5	(3)
C4-C5-C6 119.4 (4) $O3-C26-O4$ 120.4	(3)
C5-C6-C1 120.1 (4) 03-C26-C25 117.0	(2)
$C_{12} = C_{7} = C_{8}$ 120.1 (3) $O_{4} = C_{26} = C_{25}$ 122.0	5 (3)
C12 = C7 = N1 120.4 (3)	,

The structure was solved through a combination of direct methods and difference Fourier synthesis. Refinement was on F^2 using the whole data set. H atoms were included at their expected positions, with fixed thermal parameters, and allowed to ride on their host atoms. The two disordered NHEt3 groups were subject to a mild similarity restraint in homologous bond distances.

Data collection: P3/P4-PC (Siemens, 1991). Cell refinement: P3/P4-PC. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1991). Program(s) used to solve structure: XS in SHELXTL/PC. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP in SHELXTL/PC. Software used to prepare material for publication: CIFTAB.

The authors would like to thank Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile. JLK and DC acknowledge financial support from FONDECYT, Chile (grants 2930010 and 91/0556, respectively). JLK is grateful to the Universidad de Atacama, Chile, for a graduate fellowship.

Lists of structure factors, anisotropic displacement parameters, leastsquares-planes data, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1181). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427-1433.
- Bustos, C., Manzur, C., González, H., Schrebler, R., Carrillo, D., Bois, C., Jeannin, Y. & Gouzerh, P. (1991). Inorg. Chim. Acta, 185, 25-31.
- Carrillo, D., Robert, F. & Gouzerh, P. (1992). Inorg. Chim. Acta, 197, 209-215.
- Henderson, B. A., Leigh, G. J. & Pickett, C. J. (1992). Adv. Inorg. Chem. Radiochem. 27, 197-203.
- Leigh, G. J. (1992). Acc. Chem. Res. 25, 177-181.
- Li-Kao, J., González, O., Baggio, R. F., Garland, M. T. & Carrillo, D. (1995). Acta Cryst. C51, 575-578.
- Sheldrick, G. M. (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
 - Siemens (1991). P3/P4-PC. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 2489-2491

(N,N-Dimethylthiocarbamoylthioacetato)triphenyltin

SEIK WENG NG

Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia

V. G. KUMAR DAS

Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received 8 April 1994; accepted 13 December 1994)

Abstract

Carboxylate bridges link the two independent molecules in the asymmetric unit of the title compound, $[Sn(C_5H_8NO_2S_2)(C_6H_5)_3]$, into a helical chain parallel to **b** {*i.e.* catena-poly[triphenyltin- μ -(N,N-dimethylthiocarbamoylthioacetato)-O:O']. Both five-coordinate Sn atoms show trans-C3SnO2 trigonal bipyramidal coordination geometry.

Comment

The bond lengths around the Sn atoms in this fungicidal compound, (I) (Kumar Das, Kuthubutheen, Ng & Ng, 1987), compare well with those found in other carboxylate-bridged triorganotin carboxylates (Ng, Chen

& Kumar Das, 1988). The repeat distance of the chain (4.33 Å) is much shorter than that found for $(C_4H_9)_3SnO_2CCH_2SC(S)N(CH_3)(C_6H_5)$ (5.12 Å; Ng, Chen, Kumar Das, Yap & Butcher, 1992), and is in agreement with the flexible chain structure previously inferred from variable-temperature Mössbauer spectroscopy ($a = -0.0152 \text{ K}^{-1}$) (Ng & Kumar Das,

1991). The slope exceeds that $(a = -0.0143 \text{ K}^{-1})$ for $(C_6H_5)_3SnO_2CCH_3$ (Ng, Chin, Chen, Kumar Das & Butcher, 1989), which is more rigid and has a repeat distance of 5.07 Å (Molloy, Purcell, Quill & Nowell, 1984). Tiekink (1991) has reviewed the structures of organotin carboxylates.

Experimental

The compound was synthesized by condensing triphenyltin hydroxide with N, N-dimethylthiocarbamoylthioacetic acid in either ethanol or toluene (Ng & Kumar Das, 1991). Transparent crystals were grown from an ethanol solution of the compound.

Crystal data

 $[Sn(C_{5}H_{8}NO_{2}S_{2})(C_{6}H_{5})_{3}]$ $M_{r} = 528.26$ Monoclinic $P2_{1}/c$ a = 12.391 (5) Å b = 17.316 (4) Å c = 21.908 (7) Å $\beta = 95.92 (2)^{\circ}$ $V = 4676 (3) Å^{3}$ Z = 8 $D_{x} = 1.501 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (North, Phillips & Mathews, 1968) $T_{min} = 0.873, T_{max} =$ 0.999 6687 measured reflections 6420 independent reflections

Refinement

Refinement on F R = 0.050 wR = 0.055 S = 0.446 3270 reflections 547 parameters H-atom parameters not refined Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 8-10^{\circ}$ $\mu = 1.285$ mm⁻¹ T = 300 K Irregular $0.29 \times 0.25 \times 0.22$ mm Colorless

3270 observed reflections $[l > 3\sigma(l)]$ $R_{int} = 0.027$ $\theta_{max} = 22.5^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 8$ $l = -23 \rightarrow 23$ 3 standard reflections frequency: 60 min intensity decay: none

 $w = 1/[\sigma^{2}(F) + 0.0004|F|^{2} + 1]$ $(\Delta/\sigma)_{max} = 0.03$ $\Delta\rho_{max} = 0.83 (9) \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 (9) \text{ e } \text{Å}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 B_{iso} for S1Bb to C23Bb, $B_{eq} = (4/3)\sum_i \sum_j \beta_{ij} a_i^* a_j^* a_i a_j$ for all others.

	х	у	Ζ	$B_{\rm iso}/B_{\rm eq}$
Sn1A	0.32276(7)	0.49233 (5)	0.27287 (4)	3.52 (2)
S1A	0.2323 (3)	0.3531 (3)	0.4646 (2)	5.7 (1)
S2A	0.1131 (5)	0.2708 (4)	0.3580 (2)	9.2 (2)

01 <i>A</i>	0.3042 (6)	0.4139 (5)	0.3500 (4)	4.6 (2)
O2A	0.4373 (6)	0.3304 (5)	0 3390 (4)	43(2)
NIA	0.024 (1)	0.3527(9)	0.4388(7)	83(4)
CIA	0.311(1)	0.4049 (8)	0.2045 (6)	43(3)
C2A	0.364(1)	0.4049(0)	0.1530(6)	
C34	0.358 (1)	0.4147(7)	0.1078 (7)	0.0 (4)
CIA	0.338(1)	0.300(1)	0.1078(7)	0.0(3)
C4A	0.297(2)	0.296(1)	0.1138 (8)	9.4 (5)
CSA	0.248 (2)	0.287(1)	0.1642 (9)	9.3 (6)
COA	0.254 (1)	0.3407 (9)	0.2094 (7)	6.7 (4)
C/A	0.4/65 (9)	0.5308(7)	0.3103 (5)	3.2 (3)
C8A	0.485 (1)	0.5745 (9)	0.3616 (7)	5.7 (4)
C9A	0.586(1)	0.598 (1)	0.3879 (8)	7.6 (5)
C10A	0.676 (1)	0.579 (1)	0.3647 (7)	7.8 (5)
C11A	0.670(1)	0.535(1)	0.3139 (7)	7.3 (5)
C12A	0.569(1)	0.512(1)	0.2866 (6)	5.9 (4)
C13A	0.1791 (9)	0.5454 (7)	0.2968 (5)	3.6 (3)
C14A	0.167(1)	0.6252 (8)	0.2949 (6)	4.7 (3)
C15A	0.069(1)	0.6585 (9)	0.3081 (8)	6.7 (4)
C16A	-0.013(1)	0.614(1)	0.3240 (9)	9.5 (5)
C17A	-0.003(1)	0 537 (1)	0.3277(9)	79(5)
C184	0.003(1)	0.507 (1)	0.3146(7)	59(4)
C10/1	0.3617 (8)	0.3552 (7)	0.3140(7)	3.7(4)
C19A	0.3017(8)	0.3332(7)	0.3008 (3)	3.0(3)
C20A	0.330(1)	0.3130 (8)	0.4234 (0)	4.0 (3)
CZIA	0.113(1)	0.3256 (8)	0.4198 (7)	5.1 (4)
CZZA	0.028 (2)	0.398 (2)	0.493 (1)	14.6 (9)
C23A	-0.080(1)	0.340(1)	0.410(1)	12.6 (8)
Sn1B	0.57656 (7)	0.24164 (6)	0.35759 (4)	3.69 (2)
S1 <i>B</i> †	0.8499 (4)	0.0225 (3)	0.4299 (2)	4.7(1)
S2B†	1.0168 (5)	-0.0591 (4)	0.3641 (3)	6.7 (2)
01 <i>B</i>	0.7191 (7)	0.1663 (5)	0.3769 (4)	4.4 (2)
O2 <i>B</i>	0.6711 (6)	0.0859 (5)	0.3016 (4)	3.7 (2)
N1 <i>B</i> †	0.939(1)	-0.1086(9)	0.4659 (8)	5.3 (4)
C1B	0.636(1)	0.3071 (7)	0.4363 (6)	3.9 (3)
C2B	0.692(1)	0.2712 (8)	0.4864 (6)	4.8 (3)
C3B	0.736(1)	0.3130 (9)	0.5368 (7)	6.3 (4)
C4B	0.729(1)	0 390 (1)	0 5372 (6)	64(4)
C5B	0.675(1)	0 4283 (9)	0.4883(7)	59(4)
C6B	0.678(1)	0.3851 (8)	0.4377(6)	45(3)
C7B	0.620(1)	0.1526 (8)	0.3687 (6)	4.5(3)
CSB	0.365(1)	0.1520(8)	0.3007(0)	75(5)
COP	0.303(1)	0.151(1)	0.3307(8)	110(7)
C10P	0.291(2)	0.094(1)	0.339(1)	11.0(7)
CIUB	0.310(1)	0.0412 (9)	0.3823 (9)	10.2 (5)
CID	0.404 (2)	0.044 (1)	0.4206 (9)	10.2 (6)
CI2B	0.480(1)	0.099(1)	0.4129 (9)	8.0 (5)
CISB	0.628 (1)	0.2799 (8)	0.2/34 (5)	4.1 (3)
CI4B	0./1/(1)	0.322(1)	0.2717 (8)	9.9 (5)
CISB	0.757 (2)	0.347 (1)	0.2193 (9)	12.9 (6)
C16B	0.703 (2)	0.330(1)	0.1659 (8)	9.3 (5)
C17B	0.613 (1)	0.287 (1)	0.1641 (7)	9.5 (6)
C18 <i>B</i>	0.574 (1)	0.262 (1)	0.2182 (7)	7.7 (5)
C19B	0.7374 (9)	0.1091 (7)	0.3452 (6)	3.8 (3)
C20B	0.842(1)	0.0681 (8)	0.3603 (6)	5.3 (4)
C21 <i>B</i> †	0.940(1)	-0.055(1)	0.421 (1)	4.3 (5)
C22B†	1.000 (3)	-0.172 (1)	0.467 (2)	11(1)
C23B†	0.871 (2)	-0.106(1)	0.514(1)	6.3 (6)
S1Bb1	0.9442 (9)	0.1041 (7)	0.4060 (5)	4.9(2)
S2Bbt	0.805 (Ì)	0.0505 (9)	0.5009 (7)	7.1 (3)
N1Bbt	0.980 (3)	0.124 (2)	0.527(2)	7(1)
C21Bbt	0.914(3)	0.094(2)	0.484(2)	36(8)
$C_{22}B_{bt}$	0.985(5)	0.121(3)	0.597 (2)	9(2)
C_{23Rht}	1.096 (4)	0.159(3)	0.497 (2)	8(1)
C25004	1.070 (4)	0.137(3)	0.477 (2)	0(1)

 \dagger Site occupancy = 0.67.

 \ddagger Site occupancy = 0.33.

Table 2. Selected geometric parameters (Å, °)

Sn1A—O1A	2.199 (9)	Sn1B—O1B	2.201 (9)
Sn1A—O2B ¹	2.307 (9)	Sn1B—O2A	2.315 (8)
Sn1A—C1A	2.13 (1)	Sn1B—C1B	2.13 (1)
Sn1A—C7A	2.10 (1)	Sn1B—C7B	2.11 (2)
Sn1A—C13A	2.12 (1)	Sn1B—C13B	2.12 (1)
OlA—Sn1A—ClA	95.5 (5)	O2A—Sn1B—O1B	174.8 (3)
OlA—Sn1A—C7A	93.4 (4)	O2A—Sn1B—C1B	88.7 (4)
OlA—Sn1A—C13A	85.4 (4)	O2A—Sn1B—C7B	91.0 (5)
OlA—Sn1A—O2B ⁱ	172.5 (3)	O2A—Sn1B—C13B	85.8 (4)

O2B ¹ —Sn1A—C1A O2B ¹ —Sn1A—C7A O2B ¹ —Sn1A—C13A C1A—Sn1A—C13A C1A—Sn1A—C13A C7A—Sn1A—C13A	90.4 (4) 87.6 (4) 87.7 (4) 119.7 (5) 119.0 (5) 121.1 (5)	O1BSn1BC1B O1BSn1BC7B O1BSn1BC13B C1BSn1BC13B C1BSn1BC13B C7BSn1BC13B	87.5 (4) 94.0 (5) 92.5 (4) 118.2 (5) 115.3 (5) 126.3 (6)
Sn1A—O1A—C19A Sn1A—O2B'—C19B'	127.9 (8) 133.9 (9)	C7B—Sn1B—C13B Sn1B—O1B—C19B Sn1B—O2A—C19A	126.3 (6) 123.6 (8) 136.7 (8)
Symmetry code: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.			

The Sn atoms were found by direct methods and the other non-H atoms were located from difference Fourier maps. The thiocarbamoylthio group of molecule *B* was disordered over two positions, the occupancies of which were set at 0.67 and 0.33. The atoms of the thiocarbamoylthio group with the site occupancy factor of 0.33 were refined isotropically; other non-H atoms were refined anisotropically. H atoms were placed at calculated positions (C—H = 0.95 Å) and included in the structure-factor calculations.

Data collection and cell refinement: CAD-4 diffractometer software (Enraf-Nonius, 1988). Data reduction: *MolEN* (Fair, 1990). Structure refinement: *MolEN*. Molecular graphics: *ORTEPII* (Johnson, 1976); *PLUTON* (Spek, 1994). Preparation of material for publication: *MolEN*.

We thank the National Science Council for R & D (grant No. 2-07-04-06) for generously supporting this work.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: TA1019). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kumar Das, V. G., Kuthubutheen, A. J., Ng, S. W. & Ng, W. K. (1987). Malaysian Patent PI 8700031.
- Molloy, K. C., Purcell, T. G., Quill, K. & Nowell, I. W. (1984). J. Organomet. Chem. 267, 237-247.
- Ng, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-64.
- Ng, S. W., Chen, W., Kumar Das, V. G., Yap, C. K. & Butcher, R. J. (1992). *Chemistry and Technology of Silicon and Tin*, edited by V. G. Kumar Das, S. W. Ng & M. Gielen, pp. 565–571. Oxford Univ. Press.
- Ng, S. W., Chin, K. L., Chen, W., Kumar Das, V. G. & Butcher, R. J. (1989). J. Organomet. Chem. 376, 277–281.
- Ng, S. W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-358.
- Spek, A. L. (1994). *PLUTON. Molecular Graphics Program.* Univ. of Utrecht, The Netherlands.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.